Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Brain Sci ; 14(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38672027

RESUMO

This study aimed to investigate the effects of intranasal air-puffing on cognitive impairments and brain cortical activity following one night of partial sleep deprivation (PSD) in adults. A total of 26 healthy adults underwent the numerical Stroop test (NST) and electroencephalography (EEG) before and after one night of PSD. Following PSD, subjects in the treatment group (n = 13) received nasal air-puffs (5 Hz, 3 min) before beginning the NST and EEG recording. Administration of nasal air-puffs in the treatment group restored the PSD-induced increase in error rate and decrease in reaction time and missing rate in the NST. Intranasal air-puffs recovered the PSD-induced augmentation of delta and theta power and the reduction of beta and gamma power in the EEG, particularly in the frontal lobes. Intranasal air-puffing also almost reversed the PSD-induced decrease in EEG signal complexity. Furthermore, it had a restorative effect on PSD-induced alteration in intra-default mode network functional connectivity in the beta and gamma frequency bands. Rhythmic nasal air-puffing can mitigate acute PSD-induced impairments in cognitive functions. It exerts part of its ameliorating effect by restoring neuronal activity in cortical brain areas involved in cognitive processing.

2.
CNS Neurosci Ther ; 30(3): e14656, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38439573

RESUMO

AIMS: In this study, the anticonvulsant action of closed-loop, low-frequency deep brain stimulation (DBS) was investigated. In addition, the changes in brain rhythms and functional connectivity of the hippocampus and prefrontal cortex were evaluated. METHODS: Epilepsy was induced by pilocarpine in male Wistar rats. After the chronic phase, a tripolar electrode was implanted in the right ventral hippocampus and a monopolar electrode in medial prefrontal cortex (mPFC). Subjects' spontaneous seizure behaviors were observed in continuous video recording, while the local field potentials (LFPs) were recorded simultaneously. In addition, spatial memory was evaluated by the Barnes maze test. RESULTS: Applying hippocampal DBS, immediately after seizure detection in epileptic animals, reduced their seizure severity and duration, and improved their performance in Barnes maze test. DBS reduced the increment in power of delta, theta, and gamma waves in pre-ictal, ictal, and post-ictal periods. Meanwhile, DBS increased the post-ictal-to-pre-ictal ratio of theta band. DBS decreased delta and increased theta coherences, and also increased the post-ictal-to-pre-ictal ratio of coherence. In addition, DBS increased the hippocampal-mPFC coupling in pre-ictal period and decreased the coupling in the ictal and post-ictal periods. CONCLUSION: Applying closed-loop, low-frequency DBS at seizure onset reduced seizure severity and improved memory. In addition, the changes in power, coherence, and coupling of the LFP oscillations in the hippocampus and mPFC demonstrate low-frequency DBS efficacy as an antiepileptic treatment, returning LFPs to a seemingly non-seizure state in subjects that received DBS.


Assuntos
Epilepsia , Pilocarpina , Humanos , Masculino , Ratos , Animais , Pilocarpina/toxicidade , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/terapia , Anticonvulsivantes , Hipocampo , Aprendizagem em Labirinto
4.
J Neurosci ; 44(5)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38124004

RESUMO

The impact of dopamine on synaptic plasticity and cognitive function following seizure is not well understood. Here, using optogenetics in the freely behaving animal, we examined exploratory behavior and short-term memory in control and kindled male mice during tonic stimulation of dopaminergic neurons within the ventral tegmental area (VTA). Furthermore, using field potential recording, we compared the effect of dopamine on synaptic plasticity in stratum radiatum and stratum oriens layers of both ventral and dorsal hippocampal CA1 regions, and again in both control and kindled male mice. Our results demonstrate that tonic stimulation of VTA dopaminergic neurons enhances novelty-driven exploration and short-term spatial memory in kindled mice, essentially rescuing the seizure-induced cognitive impairment. In addition, we found that dopamine has a dual effect on LTP in control versus kindled mice, such that application of dopamine prevented LTP induction in slices from control mice, but rescued LTP in slices taken from the kindled animal. Taken together, our results highlight the potential for dopaminergic modulation in improving synaptic plasticity and cognitive function following seizure.


Assuntos
Dopamina , Hipocampo , Camundongos , Masculino , Animais , Dopamina/farmacologia , Hipocampo/fisiologia , Região CA1 Hipocampal/fisiologia , Convulsões , Cognição , Potenciação de Longa Duração/fisiologia
5.
Brain Res ; 1822: 148620, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37848119

RESUMO

Epilepsy is a neurological disorder that remains difficult to treat due to the lack of a clear molecular mechanism and incomplete understanding of involved proteins. To identify potential therapeutic targets, it is important to gain insight into changes in protein expression patterns related to epileptogenesis. One promising approach is to analyze proteomic data, which can provide valuable information about these changes. In this study, to evaluate the changes in gene expression during epileptogenesis, LC-MC2 analysis was carried out on hippocampus during stages of electrical kindling in rat models. Subsequently, progressive changes in the expression of proteins were detected as a result of epileptogenesis development. In line with behavioral kindled seizure stages and according to the proteomics data, we described epileptogenesis phases by comparing Stage3 versus Control (S3/C0), Stage5 versus Stage3 (S5/S3), and Stage5 versus Control group (S5/C0). Gene ontology analysis on differentially expressed proteins (DEPs) showed significant changes of proteins involved in immune responses like Csf1R, Aif1 and Stat1 during S3/C0, regulation of synaptic plasticity like Bdnf, Rac1, CaMK, Cdc42 and P38 during S5/S3, and nervous system development throughout S5/C0 like Bdnd, Kcc2 and Slc1a3.There were also proteins like Cox2, which were altered commonly among all three phases. The pathway enrichment analysis of DEPs was also done to discover molecular connections between phases and we have found that the targets like Csf1R, Bdnf and Cox2 were analyzed throughout all three phases were highly involved in the PPI network analysis as hub nodes. Additionally, these same targets underwent changes which were confirmed through Western blotting. Our results have identified proteomic patterns that could shed light on the molecular mechanisms underlying epileptogenesis which may allow for novel targeted therapeutic strategies.


Assuntos
Excitação Neurológica , Proteômica , Ratos , Animais , Proteômica/métodos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ciclo-Oxigenase 2/metabolismo , Excitação Neurológica/metabolismo , Hipocampo/metabolismo
6.
Brain Res Bull ; 204: 110803, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37913849

RESUMO

The clinical use and abuse of opioids during human pregnancy have been widely reported. Several studies have demonstrated that opioids cross the placenta in rats during late gestation, and prenatal morphine exposure has been shown to have negative outcomes in cognitive function. The medial prefrontal cortex (mPFC) is believed to play a crucial role in cognitive processes, motivation, and emotion, integrating neural information from several brain areas and sending converted information to other structures. Dysfunctions in this area have been observed in numerous psychiatric and neurological disorders, including addiction. This current study aimed to compare the electrophysiological properties of mPFC neurons in rat offspring prenatally exposed to morphine. Pregnant rats were injected with morphine or saline twice a day from gestational days 11-18. Whole-cell patch-clamp recordings were performed in male offspring on postnatal days 14-18. All recordings were obtained in current-clamp configuration from mPFC pyramidal neurons to assess their electrophysiological properties. The results revealed that prenatal exposure to morphine shifted the resting membrane potential (RMP) to less negative voltages and increased input resistance and duration of action potentials. However, the amplitude, rise slope, and afterhyperpolarization (AHP) amplitude of the first elicited action potentials were significantly decreased in rats prenatally exposed to morphine. Moreover, the sag voltage ratio was significantly decreased in the prenatal morphine group. Our results suggest that the changes observed in the electrophysiological properties of mPFC neurons indicate an elevation in neuronal excitability following prenatal exposure to morphine.


Assuntos
Morfina , Efeitos Tardios da Exposição Pré-Natal , Feminino , Humanos , Ratos , Gravidez , Masculino , Animais , Morfina/farmacologia , Neurônios/fisiologia , Potenciais da Membrana/fisiologia , Células Piramidais/fisiologia , Analgésicos Opioides/farmacologia , Córtex Pré-Frontal
7.
Iran J Nurs Midwifery Res ; 28(5): 593-603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869702

RESUMO

Background: Organizational ethics focuses on the importance of how organizations behave when faced with specific situations and decisions. This study aims to identify and prioritize organizational ethics indicators in Imam Khomeini Hospital Complex (IKHC) in Iran. Materials and Methods: This was a mixed-method research project. To recognize hospital ethics indicators, 18 semistructured interviews were conducted and 38 indicators were identified through thematic analysis. In the next stage, a quantitative approach was adopted to use the importance-performance matrix for data analysis. This part was a descriptive survey with a statistical population consisting of nurses, medical, clinical, and administrative staff. The questionnaire was distributed using the random sampling method, and a total of 349 samples were collected. Results: Based on the interviews and open coding, 73 themes were identified for organizational ethics indicators and classified into two main groups: "ethics drivers in hospital" and "personal ethics." After measuring content validity, 35 indicators of organizational ethics in IKHC were examined in terms of importance and performance. The results showed that nine indicators had high importance and poor performance, 11 had high importance and performance, nine had low importance and performance, and finally six indicators had low importance and high performance, and according to these findings, practical suggestions were put forward. Conclusions: Based on the identified indices and by applying importance-performance analysis, it is recommended to continually assess the status of ethics in hospitals and offer strategies for improving organizational ethics.

8.
Neuroscience ; 532: 14-22, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37741356

RESUMO

Normal aging in mammals is accompanied by a decline in learning and memory. Dopamine plays a vital role in regulating cognitive functions, but it declines with age: During non-pathological aging, dopamine levels, receptors, and transporters decrease. Regarding the role of the dopaminergic system's changes in old age, we examined the effect of age and applied dopamine on working memory, synaptic transmission, and long-term potentiation (LTP) induction and maintenance in young adult and mature adult mice. We employed the Y-maze spontaneous alteration test to evaluate working memory. Maturation had no observed effect on working memory performance. Interestingly, working memory performance increased following intracerebroventricular administration of dopamine only in mature adult mice. We employed evoked field potential recording (in vitro) to assess the effects of age and maturation on the long-term potentiation (LTP) induction and maintenance. There was no difference in LTP induction and maintenance between young and mature adult mice before dopamine application. However, the application of dopamine on mature adult murine slices increased LTP magnitude compared to slices from young adults. According to the obtained results, it may be concluded that hippocampal neural excitability increased in mature adult subjects, and application of dopamine abolished the difference in neural excitability among young mature and adult mature groups; which was accompanied with increment of working memory and synaptic potentiation in mature adult animals.


Assuntos
Dopamina , Memória de Curto Prazo , Humanos , Camundongos , Animais , Dopamina/farmacologia , Hipocampo , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Mamíferos
9.
Life Sci ; 329: 121990, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37524159

RESUMO

AIM: Parkinson's Disease (PD) is a common age-related neurodegenerative disorder with a rising prevalence. Human pluripotent stem cells have emerged as the most promising source of cells for midbrain dopaminergic (mDA) neuron replacement in PD. This study aimed to generate transplantable mDA progenitors for treatment of PD. MATERIALS AND METHODS: Here, we optimized and fine-tuned a differentiation protocol using a combination of small molecules and growth factors to induce mDA progenitors to comply with good manufacturing practice (GMP) guidelines based on our clinical-grade human embryonic stem cell (hESC) line. KEY FINDINGS: The resulting mDA progenitors demonstrated robust differentiation and functional properties in vitro. Moreover, cryopreserved mDA progenitors were transplanted into 6-hydroxydopamine-lesioned rats, leading to functional recovery. SIGNIFICANCE: We demonstrate that our optimized protocol using a clinical hESC line is suitable for generating clinical-grade mDA progenitors and provides the ground work for future translational applications.


Assuntos
Células-Tronco Embrionárias Humanas , Doença de Parkinson , Células-Tronco Pluripotentes , Humanos , Ratos , Animais , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/fisiologia , Diferenciação Celular , Dopamina/metabolismo , Mesencéfalo/metabolismo
10.
Neurosci Lett ; 808: 137303, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37196975

RESUMO

Drug addiction is a worldwide social and medical disorder. More than 50 percent of drug abusers start their substance abuse in adolescence between the ages of 15-19. Adolescence is a sensitive and crucial period for the development and maturity of the brain. Chronic exposure to morphine, particularly during this period, lead to long-lasting effects, including effects that extend to the next generation. The current study examined the intergenerational effects of paternal morphine exposure during adolescence on learning and memory. In this study, male Wistar rats were exposed to increasing doses of morphine (5-25 mg/kg, s.c.) or saline for 10 days at postnatal days (PND) 30-39 during adolescence. Following a 20-day drug-free period, the treated male rats were mated with naïve females. Adult male offspring (PND 60-80) were tested for working memory, novel object recognition memory, spatial memory, and passive avoidance memory using the Y-Maze, novel object recognition, Morris water maze, and shuttle box tests, respectively. The spontaneous alternation (as measured in the Y-Maze test) was significantly less in the morphine-sired group compared to the saline-sired one. The offspring showed significantly less discrimination index in the novel object recognition test when compared to the control group. Morphine-sired offspring tended to spend significantly more time in the target quadrant and less escape latency in the Morris water maze on probe day when compared to the saline-sired ones. The offspring showed significantly less step-through latency to enter the dark compartment compared to the control group when measured in the shuttle box test. Paternal exposure to morphine during adolescence impaired working, novel object recognition, and passive avoidance memory in male offspring. Spatial memory changed in the morphine-sired group compared to the saline-sired one.


Assuntos
Morfina , Exposição Paterna , Feminino , Humanos , Ratos , Masculino , Animais , Morfina/efeitos adversos , Ratos Wistar , Memória de Curto Prazo , Aprendizagem em Labirinto
11.
Cell J ; 25(4): 273-286, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210648

RESUMO

OBJECTIVE: The mechanisms behind seizure suppression by deep brain stimulation (DBS) are not fully revealed, and the most optimal stimulus regimens and anatomical targets are yet to be determined. We investigated the modulatory effect of low-frequency DBS (L-DBS) in the ventral tegmental area (VTA) on neuronal activity in downstream and upstream brain areas in chemically kindled mice by assessing c-Fos immunoreactivity. MATERIALS AND METHODS: In this experimental study, 4-6 weeks old BL/6 male mice underwent stereotaxic implantation of a unilateral stimulating electrode in the VTA followed by pentylenetetrazole (PTZ) administration every other day until they showed stage 4 or 5 seizures following 3 consecutive PTZ injections. Animals were divided into control, sham-implanted, kindled, kindled-implanted, L-DBS, and kindled+L-DBS groups. In the L-DBS and kindled+L-DBS groups, four trains of L-DBS were delivered 5 min after the last PTZ injection. 48 hours after the last L-DBS, mice were transcardially perfused, and the brain was processed to evaluate c-Fos expression by immunohistochemistry. RESULTS: L-DBS in the VTA significantly decreased the c-Fos expressing cell numbers in several brain areas including the hippocampus, entorhinal cortex, VTA, substantia nigra pars compacta, and dorsal raphe nucleus but not in the amygdala and CA3 area of the ventral hippocampus compared to the sham group. CONCLUSION: These data suggest that the possible anticonvulsant mechanism of DBS in VTA can be through restoring the seizure-induced cellular hyperactivity to normal.

12.
CNS Neurosci Ther ; 29(2): 587-596, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36514209

RESUMO

AIMS: Deep brain electrical stimulation (DBS), as a potential therapy for drug resistive epileptic patients, has inhibitory action on epileptogenesis. In the present investigation, the role of dopamine D2 -like receptors in the antiepileptogenic action of DBS was studied. METHODS: Seizures were induced in adult rats by stimulating the perforant path in a semi-rapid kindling method. Five minutes after the last kindling stimulation, daily DBS was applied to the perforant path at the pattern of low frequency stimulation (LFS; 1 Hz; pulse duration: 0.1 ms; intensity: 50-150 µA; 4 trains of 200 pulses at 5 min intervals). Sulpiride (10 µg/1 µl, i.c.v.), a selective dopamine D2 -like receptor antagonist, was administered prior to the daily LFS application. RESULTS: Kindling stimulations increased cumulative daily behavioral seizure stages, daily afterdischarge duration (dADD), and population spike amplitude (PS) in dentate gyrus following perforant path stimulation, while applying LFS decreased the kindled seizures' parameters. In addition, kindling potentiated the early (at 10-50 ms inter-pulse interval) and late (at 150-1000 ms inter-pulse interval) paired-pulse inhibition and decreased the paired-pulse facilitation (at 70-100 ms inter-pulse interval). These effects were also inhibited by applying LFS. All inhibitory effects of LFS on kindling procedure were prevented by sulpiride administration. CONCLUSION: These data may suggest that LFS exerts its preventive effect on kindling development, at least partly, through the receptors on which sulpiride acts which are mainly dopamine D2 -like (including D2 , D3 , and D4 ) receptors.


Assuntos
Estimulação Encefálica Profunda , Excitação Neurológica , Ratos , Animais , Dopamina , Ratos Wistar , Sulpirida/farmacologia , Excitação Neurológica/fisiologia , Convulsões/terapia , Convulsões/prevenção & controle , Estimulação Elétrica/métodos
13.
Epilepsy Res ; 189: 107073, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36584482

RESUMO

Dopamine may be involved in the anticonvulsant action of deep brain stimulation (DBS). Therefore, ventral tegmental area (VTA), as a brain dopaminergic nucleus, may be a suitable target for DBS anticonvulsant action. This study investigated the effect of tonic and phasic stimulations of the VTA on seizure parameters. Seizures were induced in adult mice by sequential injections of a sub-convulsive dose of 35 mg/kg pentylenetetrazole (PTZ) every 48 h to develop the chemical kindling until the mice reached full kindled state (showing three consecutive seizure stages 4 or 5). Fully kindled mice received DBS once a day as tonic (square waves at 1 Hz; pulse duration: 200 µs; intensity: 300 µA; 600 pulses in 10 min) or phasic (square waves at 100 Hz; pulse duration: 200 µs; intensity: 300 µA; 8 trains of 10 pulses at 1 min interval; 800 pulses in 10 min) stimulations applied into their VTA for 4 days. A single dose of PTZ was injected after each DBS. Simultaneously electrocorticography and video recordings were performed during the seizure for accuracy in seizure severity parameters detection. Tonic but not phasic stimulation significantly decreased the epileptiform discharge duration and the seizure behavioral parameters such as maximum seizure stage, stage 5 duration, seizure duration. In addition, focal to generalized seizure latency increased following VTA tonic stimulation. These data suggest that tonic (but not phasic) stimulation of VTA before PTZ injection on 4 test days had anticonvulsant effects on PTZ-kindled seizures.


Assuntos
Excitação Neurológica , Pentilenotetrazol , Humanos , Pentilenotetrazol/toxicidade , Anticonvulsivantes/uso terapêutico , Área Tegmentar Ventral , Convulsões/terapia , Convulsões/tratamento farmacológico
14.
Int J Neurosci ; 133(5): 496-504, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-33998961

RESUMO

Aim: Low frequency stimulation (LFS) inhibits neuronal hyperexcitability following epileptic activity. However, knowledge about LFS' inhibitory mechanisms is lacking. Here, α1 and α2 adrenergic receptors' roles in mediating LFS inhibitory action on high-K+ induced epileptiform activity (EA) was examined in rat hippocampal slices.Materials and methods: LFS (1 Hz, 900 pulses) was applied to the Schaffer collaterals. Whole-cell, patch clamp recording was used to measure changes in CA1 pyramidal neurons' excitability. By applying high-K+ on hippocampal slices, EA was induced, and neuronal excitability increased.Results: When administered at the beginning of EA, LFS reduced neuronal excitability. In the presence of prazosin (10 µM, an α1 adrenergic receptor antagonist) and yohimbine (5 µM, an α2 adrenergic receptor antagonist), LFS' typically has a restorative impact on EA-induced membrane potential hyperpolarization and spike firing frequency, but this effect was reduced after high-K+ washout; These antagonists did not have a significant effect on LFS' inhibitory action on spike firing during EA.Conclusion: These findings suggest that LFS' anticonvulsant effect, on neuronal hyperexcitability following high-K+ EA, may be mediated partly through α adrenergic receptors in hippocampal slices.


Assuntos
Epilepsia , Receptores Adrenérgicos alfa , Ratos , Animais , Ratos Wistar , Hipocampo , Epilepsia/terapia , Receptores Adrenérgicos alfa 2 , Antagonistas Adrenérgicos/farmacologia , Estimulação Elétrica
15.
Epilepsy Res ; 188: 107055, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423428

RESUMO

Low frequency deep brain electrical stimulation (LFS) is a potential therapeutic strategy to control seizures in epilepsy patients. Given the functional connection of the olfactory bulb with the hippocampal formation, in this study the effect of applying LFS in the olfactory bulb on seizure severity, and learning and memory was investigated in hippocampal kindling. In male Wistar rats (250-300 g), a tripolar electrode was inserted in the CA1 region of the right hippocampus to apply kindling stimulations and record the afterdischarges (ADs). Two bipolar electrodes were also inserted bilaterally into the olfactory bulbs for applying LFS. In the kindled group, the animals received daily kindling stimulations to produce stage 5 seizures for three consecutive days. In one group of subjects, LFS was administered 2-3 min after the last kindling stimulation. Within this group, subjects were divided into two subgroups: one subgroup received two and the other subgroup received four packages of LFS protocol. Obtained data showed that bilateral LFS application to the left and right olfactory bulb reduced seizure severity. Among the protocols, applying four packages of LFS had a greater anticonvulsant effect compared to applying two packages LFS. Applying LFS in the olfactory bulb of kindled subject restored performance on measures that test short- and long-term memory - the Y maze and Morris water maze test - and applying four packages of LFS was more effective than two. These results indicated that applying LFS to the olfactory bulb had anticonvulsant effects and ameliorated the seizure-induced impairment of working and spatial memory. These effects appear to be depended on the number of applied LFS and were greater by increasing the number of LFS.


Assuntos
Anticonvulsivantes , Bulbo Olfatório , Masculino , Ratos , Animais , Ratos Wistar , Convulsões/terapia , Memória Espacial
16.
Epilepsy Res ; 178: 106821, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34839145

RESUMO

Low-frequency deep brain stimulation (LFS) inhibits neuronal hyperexcitability during epilepsy. Accordingly, the use of LFS as a treatment method for patients with drug-resistant epilepsy has been proposed. However, the LFS antiepileptic mechanisms are not fully understood. Here, the role of metabotropic glutamate receptors group I (mGluR I) in LFS inhibitory action on epileptiform activity (EA) was investigated. EA was induced by increasing the K+ concentration in artificial cerebrospinal fluid (ACSF) up to 12 mM in hippocampal slices of male Wistar rats. LFS (1 Hz, 900 pulses) was delivered to the bundles of Schaffer collaterals at the beginning of EA. The excitability of CA1 pyramidal neurons was assayed by intracellular whole-cell recording. Applying LFS reduced the firing frequency during EA and substantially moved the membrane potential toward repolarization after a high-K+ ACSF washout. In addition, LFS attenuated the EA-generated neuronal hyperexcitability. A blockade of both mGluR 1 and mGluR 5 prevented the inhibitory action of LFS on EA-generated neuronal hyperexcitability. Activation of mGluR I mimicked the LFS effects and had similar inhibitory action on excitability of CA1 pyramidal neurons following EA. However, mGluR I agonist's antiepileptic action was not as strong as LFS. The observed LFS effects were significantly attenuated in the presence of a PKC inhibitor. Altogether, the LFS' inhibitory action on neuronal hyperexcitability following EA relies, in part, on the activity of mGluR I and a PKC-related signaling pathway.


Assuntos
Anticonvulsivantes , Receptores de Glutamato Metabotrópico , Animais , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacologia , Estimulação Elétrica/métodos , Hipocampo , Humanos , Masculino , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/metabolismo
17.
Neurosci Lett ; 761: 136111, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34271134

RESUMO

Current estimates indicate that opioid use and misuse are a rising epidemic, which presents a substantial socioeconomic burden around the world. Chronic opioid consumption, specifically during the critical period of adolescence, can lead to enduring effects not only in individuals but also in future generations. Utilizing rodent model, we have previously reported the impacts of paternal exposure to chronic morphine during adolescence on neurobehavioral features in progenies. Currently, the potential transgenerational effects of paternal morphine exposure during adolescence on anxiety-like behavior and short-term memory remains unknown. Male Wistar rats were exposed to increasing doses of morphine for ten days in adolescence (PND 30-39). Thereafter, following a 30-days drug-free period, the treated male rats mated with naïve females. The anxiety-like behavior and short-term memory performance were assessed in adult male and female offspring (PND 60) using open field and Y-maze tests. Both male and female progenies of morphine-treated sires revealed a significant reduction in the movement velocity compared to progenies of saline-treated sires as measured by open field test. Morphine-sired male but not female offspring also showed a non-significant large decreasing effect on time spent in the center and frequency of entries to the center of open field box. Moreover, a significant reduction in the number of entries and percent of time spent in the novel arm was observed in male and female morphine-sired offspring, as measured using Y-maze test. Growth outcomes also did not demonstrate any difference in the number of dam's fertility, pups birth, and death between morphine-sired and saline-sired groups in both sexes. Collectively, paternal exposure to morphine during adolescence induces sex-specific and selective disturbances in short-term memory while anxiety-like behavior was slightly disturbed.


Assuntos
Ansiedade/fisiopatologia , Memória de Curto Prazo/efeitos dos fármacos , Morfina/toxicidade , Entorpecentes/toxicidade , Animais , Ansiedade/etiologia , Ansiedade/genética , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Epigênese Genética , Feminino , Masculino , Ratos , Ratos Wistar , Caracteres Sexuais
18.
Cell Tissue Res ; 386(2): 321-333, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34319434

RESUMO

Human otic organoids generated from pluripotent stem cells (PSCs) provide a promising platform for modeling, drug testing, and cell-based therapies of inner ear diseases. However, providing the appropriate niche that resembles inner ear development and its vasculature to generate otic organoids is less conspicuous. Here, we devised a strategy to enhance maturation of otic progenitor cells toward human hair cell-like cells (HCLCs) by assembling three-dimensional (3D) otic organoids that contain human PSC-derived otic cells, endothelial cells, and mesenchymal stem cells (MSCs). Heterotopic implantation of otic organoids, designated as grafted otic organoids (GOs), in ex ovo chick embryo chorioallantoic membrane (CAM) stimulated maturation of the HCLCs. Functional analysis revealed the presence of voltage-gated potassium currents without detectable sodium currents in these cells in the GOs. Our results demonstrated that implantation of 3D heterotypic cell mixtures of otic organoids improved maturation of human HCLCs. This GO-derived HCLCs could be an attractive source for drug discovery and other biomedical applications.


Assuntos
Células Ciliadas Auditivas/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Embrião de Galinha , Orelha Interna/citologia , Humanos
19.
J Environ Health Sci Eng ; 19(1): 771-780, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34150272

RESUMO

The release of volatile organic compounds (VOCs) from stationary and mobile sources increases the concentration of these pollutants in the environment. These compounds have the potential to cause adverse effects on human health and the environment. The adoption of management and engineering procedures to control the emission of these pollutants to the air has become essential. The aim of this study was to use an advanced oxidation process namely the catalytic ozonation to reduce the concentration of these pollutants in industrial output. In this experimental study, the catalytic ozonation process in the presence of ZnO nanoparticles coated on zeolite media was used in a laboratory scale to treat the air contaminated with BTEX compounds as indicators of VOCs. For this purpose, First the nanocomposites were synthesized based on chemical co-precipitation method. SEM, XRD, BET and FT-IR analyses were performed to investigate the characteristics of nanocomposites. The variables including initial concentrations of BTEX (50-200 ppm), polluted air flow rate (5-20 l/h), humidity (0-75%) and ozone dose (0.25-1 g/h) were investigated. The concentration of BTEX compounds was measured by the Gas Chromatography (GC) technique according to the NIOSH 1501 manual. The results of SEM, XRD, BET and FT-IR analyses showed the proper synthesis of nanocomposites. According to the laboratory results, the optimal conditions of the process were found to be as follows: the initial concentration of pollutants equal to 50 ppm, inlet air flow rate of 5 l/h, relative air humidity of 25-35%, and inlet ozone concentration equal to 1 g/h. Under these conditions, the removal efficiency of the compounds: benzene, toluene, ethylbenzene and xylene were obtained 98, 96, 92 and 91%, respectively. Simple ozonation and adsorption processes were less efficient than catalytic ozonation. This process had the ability to reduce the concentration of BTEX compounds to standard level.

20.
Acta Neurobiol Exp (Wars) ; 81(1): 43-57, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33949168

RESUMO

Epileptic seizures are accompanied by learning and memory impairments. In this study, the effect of low frequency stimulation (LFS) on spatial learning and memory was assessed in kindled animals and followed for one month. Fully kindled rats received LFS at 4 times (immediately, 6 h, 24 h and 30 h following the final kindling stimulation). Applying LFS improved kindled animals' performance in the Barnes maze test. This LFS action was accompanied by a decrease in NR2B gene expression, an increase in the gene expression of the α subunit of calcineurin A and an increased NR2A/NR2B ratio in kindled animals. In addition, the gene expression of the GABAA receptor γ2 subunit increased at 2-3 h after applying LFS. The increase in NR2A/NR2B ratio was also observed 1 week after LFS. No significant changes were observed one month after LFS administration. Field potential recordings in the hippocampal CA1 area showed that kindling-induced potentiation of the field EPSP slope returned to near baseline when measured 2-3 h after applying LFS. Therefore, it may be postulated that applying LFS in kindled animals reduced the seizure-induced learning and memory impairments, albeit time-dependently. In tandem, LFS prevented kindling-induced alterations in gene expression of the described proteins, which are potentially important for synaptic transmission and/or potentiation. Moreover, a depotentiation-like phenomenon may be a possible mechanism underlying the LFS action.Epileptic seizures are accompanied by learning and memory impairments. In this study, the effect of low frequency stimulation (LFS) on spatial learning and memory was assessed in kindled animals and followed for one month. Fully kindled rats received LFS at 4 times (immediately, 6 h, 24 h and 30 h following the final kindling stimulation). Applying LFS improved kindled animals' performance in the Barnes maze test. This LFS action was accompanied by a decrease in NR2B gene expression, an increase in the gene expression of the α subunit of calcineurin A and an increased NR2A/NR2B ratio in kindled animals. In addition, the gene expression of the GABAA receptor γ2 subunit increased at 2­3 h after applying LFS. The increase in NR2A/NR2B ratio was also observed 1 week after LFS. No significant changes were observed one month after LFS administration. Field potential recordings in the hippocampal CA1 area showed that kindling-induced potentiation of the field EPSP slope returned to near baseline when measured 2­3 h after applying LFS. Therefore, it may be postulated that applying LFS in kindled animals reduced the seizure-induced learning and memory impairments, albeit time-dependently. In tandem, LFS prevented kindling-induced alterations in gene expression of the described proteins, which are potentially important for synaptic transmission and/or potentiation. Moreover, a depotentiation-like phenomenon may be a possible mechanism underlying the LFS action.


Assuntos
Estimulação Encefálica Profunda , Expressão Gênica/fisiologia , Memória/fisiologia , Receptores de GABA-A/metabolismo , Animais , Estimulação Encefálica Profunda/métodos , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Transtornos da Memória/terapia , Ratos , Aprendizagem Espacial/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA